
The SOA’s Layers

Christian Emig, Kim Langer, Karsten Krutz, Stefan Link, Christof Momm, Sebastian Abeck

Cooperation & Management, Universität Karlsruhe (TH)
{ emig | langer | ... }@cm-tm.uka.de

Abstract

In this paper we introduce a reference model for the
layering of service-oriented architecture (SOA).
Opinions on how this architecture appears are often
disjunctive or contradictory within the SOA community -
a standardized layering has not as yet been established.
Therefore, it is our objective to provide a definition and
better understanding of the layers encountered within an
SOA as well as the relationships between them, thus
aiming at the provisioning of common understanding and
nomenclature for SOA.

Basically SOA aims at the provisioning of abstract
software functionality through services that can be
flexibly composed to implement business processes.
Through the deployment of reusable services a process-
oriented alignment of business and IT is achieved,
allowing fast adaptations on changes in business
processes [EW+06]. Furthermore, SOA enables the
integration of existing applications by exposing their
functionality as services improving the value of existing
software assets and avoiding redundancy in IT
infrastructure. To yield these benefits and to support the
service-oriented paradigm, SOA adds further layers to
the conventional architecture responsible for application
integration and service orchestration hence making the
underlying systems transparent for business analysts.

The bottom layer of the reference model comprises
the existing systems, called operational systems [Ar04]
or legacy systems. It holds detached systems that are
traditionally developed and therefore usually per se not
service-oriented. From the SOA perspective, it does not
matter if these legacy systems are internally monolithic
or of multi-tier architectures. It is the task of an SOA to
leverage these systems by exposing their functionality as
reusable services that build the foundation for the
alignment of IT and business processes. Up to the point
of time when SOA principles are directly applied in
application development, most of the scenarios will have
the migration character described before.

At the core services border the wrapping of existing
functionality to services is achieved with a common
interface description and communication protocol that
can be used by potential consumers. The act of exposing
this functionality as services to gain reusability is done
by software developers and involves changes in the
applications’ source code or proxy-style wrapping. Such
services are described by providing service descriptions
held in a service registry that gives information about the
syntax (e.g. through Web Service Description Language
WSDL [KL04]) and semantics (e.g. using Ontology Web
Language - Services OWL-S) [MP+04]) of the service
interfaces.

Business ProcessBusiness Process
Business ProcessBusiness Process

Mapping of the
IT-supported Parts

Business ProcessBusiness Process

Service-Oriented ArchitectureService-Oriented Architecture

Process Layer

Integration
Layer

Operational
Systems
(Traditional
Applications,
Components,
Databases)

ApplicationApplication

Presentation Layer

Core Services

Business Services

Orchestration Orchestration

Choreography

Composition

Composition

Composition

Portal

Pr
og

ra
m

m
in

g
in

 th
e

La
rg

e
Pr

og
ra

m
m

in
g

in
 th

e
Sm

al
l

Figure 1: The SOA's Layers

Through service composition at the integration layer,

functionality can be further aggregated. The term
composition in this context denotes the combination of
services yielding a more complex and coarser-grained
service [ZT05]. At the integration layer, core services are

composed that quite often have strong dependencies on
the underlying software systems. This is the field of
classical Enterprise Application Integration (EAI), but
now standardized service interface description (e.g.
WSDL) and communication protocols (e.g. Simple
Object Access Protocol SOAP) are applied. System
integrators may use the Business Process Execution
Language (BPEL) at this layer in web service based
SOA.

Reaching the border of business services, the relation
to the software systems has to be reduced to a minimum.
The hiding of the technical aspects is the chance to
enable business analysts to map their business processes
to the process layer combining (i.e. orchestrating)
business services.

The process layer sets up on the integration layer. It
implements, as the name implies, the IT-supported parts
of business processes that are mapped to business
services. The act of plugging together business services
in order to accomplish business logic and processes is
called orchestration. More precisely, the term
orchestration refers to the realization of a business
related workflow owned by a single entity [Er05]
through the combination of business relevant services.
Processes realized by orchestration expose a service
interface themselves [ZT05]. Orchestration is business
driven and therefore directly related to the authoritative
business processes. Processes realized in this kind of
fashion can in turn influence and exchange information
among each other. The coordination of business
processes is called choreography and describes the
communication protocols between business services. As
with orchestration, it is associated with the process layer
but unlike orchestration which yields processes owned
by a single entity, choreography considers the interaction
of these, often federated processes. In doing so,
choreography enables collaboration between
orchestrations [Er05] by the definition of a set of rules
for this collaboration.

In literature, it is usually not differentiated between
service composition and process orchestration and both
are put together as the so-called programming-in-the-
large [Le03]. In a contrary to this point of view, we see
two aspects that should lead to a separation into the
integration layer and the process layer: First of all, the
job is done by different people/roles. System integrators
need standardized interfaces that reduce artificial
dependencies for integration. Business analysts are
concerned with the process layer where the orchestration
of business related services takes place. Secondly, the
types of services are different in respect to system-related
dependencies and business relation at both layers. This is
the reason why we suggest separating these two layers
and adding the integration aspects to the programming-
in-the-small and the orchestration aspects to the
programming-in-the-large. Programming-in-the-large, as
done in the process layer by business analysts, implies

that the programming is done on an abstract and
technology independent level. As orchestration and
choreography are directly related to business processes it
is to be carried out by business experts such as business
analysts than system integrators.

The presentation layer on top of the process layer
integrates human users [Ar04]. It provides users with a
means to interact with the present processes. This
interaction can range from operational actions to
business related operations like starting processes or
providing business relevant user input. BPEL4People
and Web Services for Remote Portlets (WSRP) are
promising upcoming standards to be applied in this layer.

Various sources divide services into two categories
[NL04, Er05], coarse-grained and fine-grained services.
Since this type of classification is relative and no
common metrics have been defined [Le03], we pursue an
approach for service classification that has an absolute
measure. Our reference layering model therefore groups
services into core web services and business web
services. The layer of core web services defines the
border at which SOA is reached by existing applications.
Services from different underlying applications can now
be composed at the integration layer by integration
specialists. In contrast to core web services, business
services directly participate in a business process and
have immediate business relevance whereas core web
services tend to be invoked by coarser grained services
instead of being directly incorporated into process flows
though they syntactically have the same interfaces and
communication.

References

[Ar04] Ali Arsanjani: Service-Oriented Modeling and Architecture,
IBM developer works, 2004.

[Er05] Thomas Erl: Service-Oriented Architecture: Concepts,
Technology and Design, Prentice Hall PTR, ISBN 0-13-185858-0
August 04, 2005.

[EW+06] Christian Emig, Jochen Weisser, Sebastian Abeck:
Development of SOA-Based Software Systems – an Evolutionary
Programming Approach, International Conference on Internet and Web
Applications and Services ICIW’06, February 2006.

[KL04] Donald Kossmann, Frank Leymann: Web Services, Informatik
Spektrum, Band 27, 117-128, Springer Verlag, 2004.

[Le03] Frank Leymann: Web Services - Distributed Applications
without Limits, Business, Technology and Web, Leipzig, 2003.

[MP+04] D. Martin, M. Paolucci, S. McIlraith et. al.: Bringing
Semantics to Web Services: The OWL-S Approach, 2004.

[NL04] Eric Newcomer, Greg Lomow: Understanding SOA with Web
Services, Addison Wesley Professional, ISBN 0-321-18086-0,
December 14, 2004

[ZT05] zapThink, Ronald Schmelzer, Jason Bloomberg: zapThink’s
Service-Oriented Architecture Roadmap,
http://www.zapthink.com/report.html?id=ZTS-GI103, 2005

	References

